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Abstract
We have studied self-interacting self-avoiding walks (SAWs) situated on three-
dimensional fractal structures, represented by a 3D Sierpinski gasket (SG)
family of fractals. To this end, we have applied the exact renormalization
group method (for the first three members of the SG fractal family, b = 2, 3
and 4) to calculate the critical exponents γE, γθ and γG (associated with the total
number of distinct SAWs in extended phase, θ -chain and globular-collapsed
polymer phase, respectively). To extend the obtained sequence of exact values
for γE , we have applied the Monte Carlo renormalization group method for
fractals with 2 � b � 40. Our results demonstrate that the critical exponent
γE , as a function of b, monotonically increases and is always larger than the
corresponding three-dimensional Euclidean value. On the other hand, γθ (for
the values b = 2, 3 and 4), being smaller than the corresponding Euclidean
value, decreases with b.

PACS numbers: 64.60.Ak, 36.20.Ey, 05.40.Fb, 05.50.+q

1. Introduction

The self-avoiding walk (SAW) is a random walk whose path must not contain self-intersections.
This kind of random walk may serve as a model of a linear polymer. For the model situated
on a lattice, it is assumed that each visited site represents a monomer. Here we take that
two non-consecutive adjacent monomers, along the polymer chain, interact via a short-range
interaction. Presence of such interactions causes the so-called θ transition from the extended
chain polymer phase, that exists at high temperatures, to a globule (collapsed) phase polymer,
that appears at low temperatures. The point at which the transition between the two phases

0305-4470/05/030555+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 555

http://dx.doi.org/10.1088/0305-4470/38/3/003
http://stacks.iop.org/ja/38/555
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occurs is referred to as the θ -point, and the temperature associated with this point is denoted
as Tθ . The crossover in a chain comprising N units, from high temperature to low temperature
phases, that happens at the θ -point, is described by the crossover critical exponent φθ , which
determines the average number 〈M〉 of monomers being in contact, 〈M〉 ∼ Nφθ . Besides
finding the correct value of φθ , the main research question concerns the values of the critical
exponents ν and γ in three different regions (in the extended phase, at the θ -point and in
the collapsed phase). The critical exponent ν is associated with the mean-squared end-to-end
distance 〈R2

N 〉 ∼ N2ν of the N-step SAWs, whereas the critical exponent γ determines the
total number of different polymer configurations according to the law CN ∼ µNNγ−1. The
critical properties of described self-interacting polymers have been mostly studied for models
situated on two-dimensional (2D) and three-dimensional (3D) Euclidean lattices (for a review
see, for instance, [1]). In these studies, various theoretical methods were applied, such as
the field theoretical approach [2], exact enumeration method [3] and different types of Monte
Carlo simulations [4–7].

The above problem has also been studied on fractal lattices. But, in the case of fractals
it may be noted that the 2D fractal lattices (embedded in the 2D Euclidean spaces) have been
more frequently investigated than the corresponding model in the case of the 3D fractals. Since
the 3D fractals definitely may serve as a better description of real systems (porous media, for
instance), it is desirable to approach the described model in a case of a set of the 3D fractals.

The first study of the problem for a 3D fractal was done by Dhar [8, 9], who applied the
renormalization group (RG) technique in the case of the 3D Sierpinski gasket (SG), with the
scale parameter b = 2. Following the work of Dhar, the study was extended for the same
fractal but with b = 3 [10] and b = 4 [11]. Recently, using the exact and the Monte Carlo
renormalization group (MCRG) method (specifically for investigating the polymer adsorption
problem on a family of 3D SG fractals), the study of the sequence of the SG fractals has
been extended up to b = 40 [12]. However, in all these studies, the critical exponent ν

was calculated, whereas the critical exponent γ has been determined only in a case of non-
interacting SAWs for the b = 2 3D SG fractal and in the case of SAWs on truncated n-simplex
lattices (for n = 5 and 6) [13]. Taking a more comprehensive approach to the problem, we
perform here an exact and MCRG study of interacting SAWs situated on the members of the
3D SG family of fractals. Thus, we report in this paper results of our exact RG calculation of
critical exponents γ and φθ for the 3D SG fractals with b = 2, 3 and 4 for the three different
temperature regions, together with our findings of γ for a long sequence of fractals with
2 � b � 40 in a high temperature region.

This paper is organized as follows. In section 2, we first describe the 3D SG fractals for
general b. Then, we present the framework of the RG method for studying the statistics of
interacting self-avoiding walks, which, as a model of a polymer, display definite interactions
between non-contiguous monomers, in a way that should make the method applicable in the
case of exact calculations, as well as in the case of the Monte Carlo calculations. Accordingly,
in the same section, we explain details of the exact and MCRG calculations of the critical
exponents γ and φθ , for arbitrary b. In section 3, we present the obtained exact values of
γ and φθ , for b = 2, 3 and b = 4, as well as the sequence of the specific MCRG values of
γ , obtained up to b = 40. Summary of the obtained results and the relevant conclusions are
given in section 4.

2. Renormalization group scheme

Each member of the 3D SG family of fractals is labelled by the scale parameter b = 2, 3, 4, . . .

and can be constructed recursively starting with the pertinent generator which is a tetrahedron
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Figure 1. The fractal structure of the three-dimensional b = 2 SG fractal at the first stage of
construction, with an example of a piece of a possible SAW path (connected solid black segments).
The Boltzmann factor v = e−εv/kBT corresponds to the energy of interaction εv < 0 between
two non-consecutive neighbouring monomers (depicted by wiggled lines). Thus, for example, the
presented SAW configuration should contribute the weight x6v7 in the corresponding RG equation
(more specifically, in equation (2.2) for r = 0).

of base b that contains b(b + 1)(b + 2)/6 unit tetrahedrons. The subsequent fractal stages
are constructed self-similarly, by replacing each unit tetrahedron of the initial generator by a
new generator. Thus, to obtain the rth-stage fractal lattice, which we shall call the rth-order
generator, the recursive process has to be repeated (r − 1) times, so that the complete fractal
is obtained in the limit r → ∞ (see, for instance, figure 1 of [12]). The fractal dimension df

of 3D SG fractal is equal to

d3D
f = ln[(b + 2)(b + 1)b/6]/ln b. (2.1)

It should be observed that the fractal dimension acquires the Euclidean value 3, in the limit
b → ∞.

In order to describe the effect of monomer–monomer interaction, we introduce the
Boltzmann factor v = e−εv/kBT , where εv is the energy corresponding to interaction between
two non-consecutive neighbouring monomers. If we assign the weight x to a single step of the
SAW walker, then the weight of a walk having N steps, with M nearest-neighbour contacts,
is xNvM (see figure 1). An arbitrary SAW configuration can be described by using the six
restricted generating functions (see figure 2). Due to the self-similarity of the underlying
structure, these generating functions appear to be parameters in the corresponding recursion
(renormalization group) equations, which (for any b � 2) have the form

A(r+1) =
∑
i,j

a(i, j)AiBj , (2.2)

B(r+1) =
∑
i,j

b(i, j)AiBj , (2.3)

C(r+1) = c1(A,B)C + c2(A,B)D, (2.4)

D(r+1) = d1(A,B)C + d2(A,B)D, (2.5)

E(r+1) = e1(A,B)C2 + e2(A,B)D2 + e3(A,B)CD + e4(A,B)E + e5(A,B)F, (2.6)

F (r+1) = f1(A,B)C2 + f2(A,B)D2 + f3(A,B)CD + f4(A,B)E + f5(A,B)F, (2.7)

where we have omitted the superscript (r) on the right-hand side of the above relations.
Here, the self-similarity of the underlying fractals implies that numbers a(i, j), b(i, j),
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Figure 2. Schematic representation of the six restricted generating functions used in describing all
possible polymer configurations within the rth stage 3D SG fractal structure. Thus, for example,
C(r) represents the SAW paths that start somewhere within the rth-stage fractal structure and leaves
it at one tetrahedron vertex. The interior details of the rth-order fractal structure are not shown
(they are manifested by the wiggles of the SAW paths).

and coefficients c1(A,B), c2(A,B), d1(A,B), d2(A,B), ei(A,B) and fi(A,B)(i = 1, 2,

3, 4, 5), being polynomials in terms of A and B, do not depend on r.
The assumed physical picture of the problem under study suggests that the established

RG transformations should be supplemented by the following initial conditions:

A(0)(x, v) = x + 2x2v + 2x3v3, B(0)(x, v) = x2v4,

C(0) = D(0) = E(0) = F (0) = 0,
(2.8)

which are pertinent to the elementary tetrahedron (r = 0).
We begin analysis of the above set of RG equations by observing that first two

equations, (2.2) and (2.3), can be iterated independently from the rest [12]. In short, for
small values of the monomer–monomer interaction (v < vθ ), that is, at high temperatures
(T > Tθ), the extended SAW phase fixed point

(A∗, B∗) = (AE,BE), (2.9)

is reached by iterating the RG transformations. Linearization of the RG equations (2.2) and
(2.3) in the vicinity of this fixed point gives only one relevant eigenvalue λE

ν , associated with
the mean-squared end-to-end distance 〈R2

N 〉 of the N-step polymer chain. In the general case〈
R2

N

〉
behaves asymptotically (for large N) as according to the power law

〈
R2

N

〉 ∼ N2ν . Within
the RG approach the critical exponent ν should be calculated using the formula

ν = ln b

ln λν

, (2.10)

so that, by inserting here λE
ν we obtain the critical exponent νE = ln b

/
ln λE

ν , valid at high
temperatures T > Tθ .

Starting with x = xθ and v = vθ (at T = Tθ ), iteration of the RG equations (2.2) and
(2.3) leads to the tricritical fixed point

(A∗, B∗) = (Aθ , Bθ ). (2.11)

Linearization of (2.2) and (2.3), in the vicinity of this fixed point, produces two relevant
eigenvalues λθ

ν and λθ
φ

(
λθ

ν > λθ
φ

)
. The first gives the critical exponent νθ = ln b

/
ln λθ

ν , which
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is smaller than νE and which corresponds to the so-called collapse transition. On the other
hand, the second eigenvalue λθ

φ determines the crossover critical exponent

φθ = ln λθ
φ

ln λθ
ν

, (2.12)

which describes the tricritical scaling (xc − xθ ) ∼ (v − vθ )
1/φθ of the critical line xc(v) in the

interaction parameter (x, v) space.
The physical meaning of the critical exponent φθ can be conceived in the following

way. The singular part of the internal energy (per monomer) of a polymer system behaves as
UN ∼ N(α−1)φθ , where α is the thermal critical exponent [14]. It was proved [15] that, at the
collapse transition, critical exponents α and φθ obey the tricritical scaling relation 2−α = 1/φθ ,
so that UN ∼ Nφθ−1. On the other hand, because to each contact between monomers there
corresponds the energy εv , the quantity UN can be expressed as UN = εv〈M〉/N , where 〈M〉
is the average number of monomers in contact. From here it follows that:

〈M〉 ∼ Nφθ , (2.13)

which means that the crossover exponent φθ determines (at the θ -point, T = Tθ ) the mean
number of monomers in contact.

Depending on the value of the one-step weight (fugacity) x, for strong monomer–
monomer interactions (v > vθ ) RG equations (2.2) and (2.3) bring about the trivial fixed
point (A,B)∗ = (0, 0), for x < xc(v), or (A,B)∗ = (∞,∞) for x > xc(v), whereas for x
being precisely equal to xc(v), the corresponding fixed point

(A∗, B∗) = (AG,BG), (2.14)

describes the collapsed globule regime of the polymer system under study. Finally,
analysing the RG equations in the vicinity of (AG,BG), one can find the critical exponent
νG = ln b

/
ln λG

ν which satisfies the relation νG < νθ < νE .
In order to find the asymptotic behaviour of the total number C(N, T ) of N-step SAWs,

which is expected, for large N, to display the following power law:

C(N, T ) ∼ µNNγ−1 (2.15)

with the associated critical exponent γ (and µ being the critical connectivity constant) it is
necessary to construct the generating function

G(x, T ) =
∞∑

N=1

N∑
M=1

C(N,M)xN(v(T ))M. (2.16)

Here C(N,M) is the number of N-step SAWs with M nearest-neighbour contacts of non-
consecutive monomers. Accordingly, we expect the following singular behaviour of the above
generating function:

Gsing ∼ (xc − x)−γ , (2.17)

at the critical fugacity xc = xc(T ).
We have verified that, for arbitrary b, the generating function G(x, T ) is of the form

G(x, T ) =
∞∑

r=0

(
6

b(b + 1)(b + 2)

)r+1

{pCC(C(r))2 + pCDC(r)D(r)

+ pDD(D(r))2 + pEE(r) + pF F (r)}, (2.18)

where the coefficients pCC, pCD, pDD, pE and pF are some polynomials in A(r) and B(r). The
above form for G(x, T ) springs from the fact that all possible SAW paths, within the (r + 1)th-
order fractal structure, can be made in five different ways, using the rth-order structures. The
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structure of expression (2.18) shows that the asymptotic behaviour of G(x, T ), in the vicinity
of the critical fugacity xc(v), depends on the corresponding behaviour of the restricted partition
functions (2.2)–(2.7). Assuming that the singular behaviour of (2.18) is of the form (2.17), it
can be shown that the critical exponent γ should be

γ =
ln

6λ2
γ

b(b + 1)(b + 2)

ln λν

, (2.19)

where λγ is the largest eigenvalue of the matrix formed of the coefficients c∗
1 =

c1(A
∗, B∗), c∗

2 = c2(A
∗, B∗), d∗

1 = d1(A
∗, B∗) and d∗

2 = d2(A
∗, B∗) (that appear in the

RG transformations (2.4) and (2.5)) evaluated at the non-trivial fixed points of the RG
transformations (2.2) and (2.3), that is,

λγ = c∗
1 + d∗

2 +
√

(c∗
1 − d∗

2 )2 + 4d∗
1 c∗

2

2
. (2.20)

To verify forms (2.19) and (2.20), an intricate analysis, similar to those applied in [8], is
necessary. Here we note that to learn specific values of γ in three different regions (that is
to find exponents γE , γθ and γG), for a set of the members of the 3D SG fractal family, one
needs to calculate the two eigenvalues λν and λγ , at three different fixed points (2.9), (2.11)
and (2.14), which correspond to the high temperature regions, to the vicinity of the θ -point,
and to the low temperature regions, respectively.

3. Presentation of the obtained results

We have calculated the critical exponent γ , associated with the total number of SAWs, and the
critical exponent φθ which determines the average number 〈M〉 of monomers being in contact,
for a sequence of the 3D SG fractals. Before this work, only the value for the critical exponent
γ was known in the high temperature region of the b = 2 fractal [8]. Here we have calculated
γ for 2 � b � 40, and φθ for 2 � b � 4 by applying the exact and MCRG methods.

Exact calculation of γ requires knowledge of coefficients a(i, j) and b(i, j) that appear
in (2.2) and (2.3) in order to find λν (which was done in [12] for 2 � b � 4). Besides, one
should know coefficients of polynomials c1, c2, d1 and d2 (that appear in (2.4) and (2.5)) in
order to find λγ . The latter can be calculated by enumerating the entire set of possible SAWs
that are described by the restricted partition functions C(r) and D(r). We have found that this
enumeration is feasible in the cases b = 2, 3 and 4. More precisely, for b = 2 the enumeration
can be done straightforwardly [8], whereas for b = 3 and b = 4 it requires a reasonable
computer facility (see the appendix).

For a sequence of b � 5, the exact determination of polynomials c1, c2, d1 and d2 cannot
be accomplished using the present-day computers. However, one can surmount this problem
because the calculation of λγ does not need a complete knowledge of polynomials c1, c2, d1 and
d2 (that is, one does not need to know all their coefficients). In fact, for obtaining λγ one needs
only values of the relevant polynomials at the appropriate fixed point (see equation (2.20)).
Fortunately, the polynomials that appear in (2.4) and (2.5) can be conceived as the grand
canonical partition functions of the appropriate ensembles and, consequently, within the
MCRG method, the requisite values of polynomials can be accurately determined by numerical
experiments. Details of the way to learn values of c∗

1, c
∗
2, d

∗
1 and d∗

2 are quite similar to the
way applied previously [16, 17], and here we are not going to elaborate on it further.

In table 1 we present our exact and MCRG findings for γE for a sequence of the 3D
SG fractals (2 � b � 40). Before making an overall comparison of the exact and the
MCRG results, it is interesting to observe that, for b = 2 fractal, the value γE = 1.42 ± 0.04
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Table 1. The exact (2 � b � 4) and MCRG (2 � b � 40) results for the critical exponents γE

obtained in this work, in a high temperature region, described by the fixed points (AE, BE) [12],
for the 3D SG family of fractals. The given error bars have been determined by statistics of the
MC simulation. Each MCRG entry of the table has been obtained by performing 5 × 105 MC
simulations.

b (AE,BE) γE

2 (0.4294,0.0499) 1.446 06
(0.4311 ± 0.0009, 0.0505 ± 0.0023) 1.446 ± 0.017

3 (0.3419,0.0239) 1.535 18
(0.3421 ± 0.0004, 0.0245 ± 0.0015) 1.537 ± 0.011

4 (0.2899, 0.0122) 1.616 50
(0.2898 ± 0.0004, 0.0122 ± 0.0020) 1.617 ± 0.010

5 (0.2560 ± 0.0004, 0.0067 ± 0.0019) 1.704 ± 0.011
6 (0.2319 ± 0.0003, 0.0038 ± 0.0012) 1.776 ± 0.012
7 (0.2148 ± 0.0003, 0.0020 ± 0.0018) 1.851 ± 0.013
8 (0.2016 ± 0.0003, 0.0012 ± 0.0026) 1.931 ± 0.014
9 (0.1912 ± 0.0004, 0.0007 ± 0.0008) 2.021 ± 0.015
10 (0.1829 ± 0.0003, 0.0005 ± 0.0023) 2.093 ± 0.016
12 (0.1703 ± 0.0004, 0.0001 ± 0.0035) 2.207 ± 0.019
15 (0.1581 ± 0.0001, –) 2.356 ± 0.025
17 (0.1525 ± 0.0001, –) 2.436 ± 0.030
20 (0.1464 ± 0.0001, –) 2.605 ± 0.041
25 (0.1399 ± 0.0001, –) 2.757 ± 0.059
30 (0.1355 ± 0.0001, –) 2.920 ± 0.076
35 (0.1327 ± 0.0001, –) 3.13 ± 0.16
40 (0.1306 ± 0.0001, –) 3.18 ± 0.28

was obtained by applying the series expansion method [18]. Comparing this value with the
corresponding results (exact and MCRG) from table 1, it can be noticed that the MCRG
result (1.446 ± 0.017) is definitely closer to the exact value (1.44 606). Now we compare
the results obtained, via the exact RG approach and through the MCRG technique, for the
first three members (b = 2, 3, 4) of the SG fractal family. One can observe that the MCRG
results for the critical exponent γE deviate at most 0.8% from the exact results. This very
good agreement provides confidence in applying the MCRG approach for a longer sequence
of fractals (5 � b � 40). For the sake of a better assessment of the global behaviour
of the critical exponent γE as a function of the fractal scaling parameter b, we depict
the corresponding values (from table 1) in figure 3. One can see that γE , being always
larger than recently obtained three-dimensional Euclidean values (γE(d = 3) = 1.1585
[3], γE(d = 3) = 1.1581 ± 0.0025 ± 0.0033 [6], γE(d = 3) = 1.1575 ± 0.0006 [7]),
monotonically increases with b (in the studied interval, 2 � b � 40). Here one encounters the
provocative question about the behaviour of γE for large b, and in particular for b → ∞. To
answer this question one may try to adopt the finite-size scaling method which was successfully
applied [19] in the case of the 2D SG family of fractals (with the prediction that γE for very
large b goes, from below, to the non-Euclidean value, that is, it goes to 133/32 instead of
43/32). Finally, it is interesting to compare obtained values of γE with other results found
for the 3D fractals. However, we have been able to locate only the work [20] in which
the exponent γE for SAWs on the 3D Sierpinski carpet fractal, labelled by (n, k) = (3, 7),
was calculated. For this fractal (whose fractal dimension is equal to df = 2.727) the value
γE = 1.36 ± 0.03 was numerically predicted. One may observe that the latter value is larger
than the 3D Euclidean value (γE ≈ 1.158), and besides it appears to be smaller than all known
values of γE (see table 1) for the 3D SG fractals.
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Figure 3. The exact (open triangles) and the MCRG (solid triangles) results for the extended
phase critical exponent γE as a functions of the scale parameter b. The Euclidean value for
γE(d = 3) ≈ 1.158, that springs from three different approximate numerical findings [3, 6, 7], is
represented by the dashed horizontal line. The error bars, for the MCRG results, are smaller than
the height of the corresponding symbols (solid triangles) for all b � 20.

Figure 4. The exact results for the critical exponents γθ (open triangles), φθ (open diamonds), and
νθ (solid triangles) as a functions of the scale parameter b. The corresponding Euclidean values
γθ (d = 3) = 1, φθ (d = 3) = 1/2 and νθ (d = 3) = 1/2 are depicted by dashed horizontal lines.

Table 2. Values of the critical exponents φθ , γθ and γG obtained in this work, via exact
renormalization group approach, for two different phases (θ -chain and collapsed SAW) on 3D
SG fractals. For the sake of completeness, we quote here the values for the fixed points ((Aθ , Bθ )

and (AG, BG)) and critical exponents (νθ and νG) for b = 2, b = 3 and b = 4 fractals, that was
obtained in [9], [10] and [12] respectively.

b Aθ Bθ νθ φθ γθ AG BG νG γG

2 1/3 1/3 0.5294 0.60986 0.94119 0 22−1/3 1/2 −1
3 0.2071 0.4307 0.5072 0.41374 0.91994 0 ∞ 0.4819 –
4 0.1929 0.3388 0.5067 0.62545 0.91219 0 22−1/3 1/2 −1.0805

In figure 4 we present our exact findings for the critical exponents φθ , γθ and νθ , which
correspond to the polymer θ -point behaviour (see, also, results presented in table 2). First, we
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can see that all obtained exact values of γθ , which monotonically decrease with increase of
the scaling parameter b, are less than the three-dimensional Euclidean mean field prediction
γθ = 1 (which was confirmed by the numerical result γθ (d = 3) = 0.9985±0.0035±0.0033
of Monte Carlo simulations performed on 3D Euclidean lattice [6]). Next, we may observe
that the behaviour of the critical exponent φθ , within the available region of b, is at present
inconclusive. Eventually, concerning the behaviour of the critical exponent νθ , the exact
results presented in figure 4 show that νθ , being always larger than the 3D Euclidean value
1/2, monotonically decrease with increase of b. At this point we again meet the situation
when we cannot say anything about the asymptotic behaviour of studied critical exponents
at the θ -point. Specifically, it is challenging to deduce whether νθ becomes smaller than the
Euclidean value 1/2 (what, in fact, happens in the high temperature region [12]). To answer
this question by applying the MCRG method appears to be forbiddingly difficult task, because
of the instability of the corresponding θ fixed points. This challenge is more interesting in the
light of the fact that was found [2] (through the ε = 3 − d expansion) that in the 3D Euclidean
case all critical exponents φθ , γθ , and νθ approach the mean field predictions via larger values.

Finally, we may comment on the obtained values for the critical exponent γG (see table 2).
The given values are obtained in accord with formula (2.15) that was assumed to be valid for all
temperature regions. However, at low temperatures it was argued [21] that adequate formula
should be

CN ∼ µN
0 µNσ

1 NγG−1, (3.1)

where µ0(T ) and µ1(T ) are respectively bulk and perimeter monomer fugacities, both
depending on the temperature T. In the 3D Euclidean case σ = 2/3. So far, there has
not been much work concerning the correct value of γG, and accordingly this problem remains
unravelled.

4. Summary

In this paper, we have studied self-interacting self-avoiding walk (SAW) situated on fractal
structures represented by the three-dimensional (3D) Sierpinski gasket (SG) family of fractals.
Specifically, we have calculated the critical exponents γ (associated with the total number of
distinct SAWs) in the three different phases (extended, θ -point and globular) that occur in the
case when the interactions between non-consecutive adjacent monomers are present. It should
be pointed out that this exponent has not been calculated in previous attacks of the described
problem.

By applying the exact renormalization group method (for b = 2, 3 and 4) we have
calculated specific results for the critical exponents γE, γθ and γG, for the three different
phases. In addition, we obtained the crossover critical exponent φθ associated with the average
number of monomers in contact at the θ -point. The specific accomplishment in the course
of this work is the calculation of a long sequence of values of γE , for 2 � b � 40, obtained
by applying the Monte Carlo renormalization group method. Our results demonstrate that the
critical exponent γE , for the studied values of b, being always larger than the corresponding
three-dimensional Euclidean value γE ≈ 1.158, monotonically increases with b. On the other
hand, γθ (for b = 2, 3 and 4), being always smaller than the corresponding Euclidean value
(γθ = 1), seems to monotonically decrease with b, whereas the crossover critical exponent φθ

(for the same values of b) does not display a definite trend.
On the exposed grounds of the presented investigation we may conclude that the set of

obtained results of the studied problem (the case of self-interacting SAWs on the 3D fractals)
has been significantly extended. As a further investigation one may try to extend our results
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by some other method, for instance by applying the finite-size scaling technique. Thereby
our findings contribute to the endeavour to achieve an insight of the same problem on the 3D
Euclidean lattice.
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Appendix

In this appendix, we give the exact shape of the polynomials c1, c2, d1 and d2 that appears in
RG equations (2.4) and (2.5). We have found that these polynomials have the following form:

c1(A,B) =
∑
i,j

C1(i, j)AiBj , (A.1)

c2(A,B) =
∑
i,j

C2(i, j)AiBj (A.2)

d1(A,B) =
∑
i,j

D1(i, j)AiBj , (A.3)

d2(A,B) =
∑
i,j

D2(i, j)AiBj , (A.4)

where, in the case b = 2, the nonzero values of coefficients C1(i, j), C2(i, j),D1(i, j) and
D2(i, j) are

C1(0, 0) = 1, C1(1, 0) = 3, C1(2, 0) = 6, C1(2, 1) = 6, C1(3, 0) = 6,

C2(2, 0) = 6, C2(2, 1) = 18, C2(3, 0) = 12,

D1(2, 0) = 1,D1(2, 1) = 3,D1(3, 0) = 2,

D2(0, 3) = 22,D2(1, 2) = 22,D2(2, 0) = 3,D2(2, 1) = 16,D2(3, 0) = 7

whereas for b = 3 they are,

C1(0, 0) = 1, C1(1, 0) = 3, C1(2, 0) = 15, C1(2, 1) = 6, C1(2, 2) = 18, C1(3, 0) = 48,

C1(3, 1) = 54, C1(3, 2) = 96, C1(3, 3) = 72, C1(3, 4) = 132,

C1(3, 5) = 240, C1(4, 0) = 132,

C1(4, 1) = 210, C1(4, 2) = 444, C1(4, 3) = 1104, C1(4, 4) = 1836, C1(5, 0) = 312,

C1(5, 1) = 750, C1(5, 2) = 1368, C1(5, 3) = 2268, C1(5, 4) = 2976, C1(6, 0) = 576,

C1(6, 1) = 1596, C1(6, 2) = 2958, C1(6, 3) = 3588, C1(7, 0) = 792,

C1(7, 1) = 2154, C2(7, 2) = 2748, C1(8, 0) = 780, C1(8, 1) = 1722, C1(9, 0) = 378,

C2(2, 0) = 6, C2(2, 1) = 18, C2(3, 0) = 30, C2(3, 1) = 78, C2(3, 2) = 72, C4(3, 3) = 132,

C2(3, 4) = 240, C2(3, 5) = 960, C2(4, 0) = 102, C2(4, 1) = 252, C2(4, 2) = 1044,

C2(4, 3) = 3432, C2(4, 4) = 5088, C2(5, 0) = 372, C2(5, 1) = 1290, C2(5, 2) = 3060,

C2(5, 3) = 6492, C2(5, 4) = 9576, C2(6, 0) = 888, C2(6, 1) = 3390, C2(6, 2) = 8796,

C2(6, 3) = 15 144, C2(7, 0) = 1368, C2(7, 1) = 4848, C2(7, 2) = 8964, C2(8, 0) = 1668,
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C2(8, 1) = 5256, C2(9, 0) = 1050,

D1(2, 4) = 66,D1(2, 7) = 1304,D1(3, 0) = 1,D1(3, 2) = 12,D1(3, 3) = 44,

D1(3, 4) = 244,D1(3, 5) = 1400,D1(3, 6) = 2420,D1(4, 0) = 9,D1(4, 1) = 23,

D1(4, 2) = 62,D1(4, 3) = 410,D1(4, 4) = 1428,D1(4, 5) = 4632,D1(5, 0) = 40,

D1(5, 1) = 149,D1(5, 2) = 474,D1(5, 3) = 1632,D1(5, 4) = 3126,D1(6, 0) = 115,

D1(6, 1) = 507,D1(6, 2) = 1456,D1(6, 3) = 2912,D1(7, 0) = 241,D1(7, 1) = 983,

D1(7, 2) = 1962,D1(8, 0) = 303,D1(8, 1) = 798,D1(9, 0) = 202,

D2(2, 3) = 66,D2(2, 6) = 1304,D2(2, 7) = 4308,D2(3, 2) = 66,D2(3, 3) = 134,

D2(3, 4) = 1400,D2(3, 5) = 7068,D2(3, 6) = 27 088,D2(4, 0) = 9,D2(4, 1) = 64,

D2(4, 2) = 296,D2(4, 3) = 1900,D2(4, 4) = 8448,D2(4, 5) = 23 684,D2(5, 0) = 72,

D2(5, 1) = 354,D2(5, 2) = 2062,D2(5, 3) = 8442,D2(5, 4) = 24 064,D2(6, 0) = 224,

D2(6, 1) = 1512,D2(6, 2) = 5870,D2(6, 3) = 15 172,D2(7, 0) = 566,D2(7, 1) = 3310,

D2(7, 2) = 8696,D2(8, 0) = 793,D2(8, 1) = 2854,D2(9, 0) = 620.

For b = 4 the pertinent coefficients require much more space (four printed pages) and we
do not give them here (the relevant data are, however, available upon request addressed to the
authors).
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